BTN Turbo
BTN Turbo Partner - your dedicated turbo expert
Turbo Info
BSI Registered - UKAS Quality Management

 

How A Turbocharger Works

The principle of turbocharging

In order to explain how a turbocharger works we must first look at the four-stroke cycle:

4 Stoke Cycle

The four stages of the cycle – commonly known as Suck, Squeeze, Bang and Blow – are as follows:

  • Suction (charge exchange stroke)

    In a diesel or petrol injection engine, the piston moves down and air is drawn through the intake valve. In a carburettor petrol engine, the air is mixed with petrol.
  • Compression (power stroke)

    As the piston moves back up, the air or petrol/air mixture is compressed.
  • Expansion (power stroke)

    In the carburettor or injected petrol engine, the fuel/air mixture is ignited by a spark plug; in the diesel engine, fuel is injected under high pressure and the mixture ignites spontaneously. In either case, the explosion drives the piston downwards.
  • Exhaust (charge exchange stroke)

    The exhaust gas is expelled through the exhaust valve when the piston moves up. In a turbocharged engine, the air is pre-compressed before being supplied to the cylinder during the suction stroke. Because it is at a higher pressure, a greater mass of air is held in the combustion chamber, which means that fuel is burned more efficiently. This increases the engine’s power output, giving more torque and a higher top speed compared to a normally aspirated engine of the same swept volume, and reduces emissions. Some diesel engines can also be set up to accept more air but the same amount of fuel, which does not increase the power but results in cleaner exhaust gases.

Next page: How the turbocharger works

 

BTN Turbo are dedicated to supplying an optimum quality product on time, at a competitive
price and supporting the continuous development of the turbocharging industry.

Monday, December 11, 2017